From 80d1346f17a3ae138cf84cb25f27a6ff6ccf4696 Mon Sep 17 00:00:00 2001 From: Franciszek Malinka Date: Tue, 3 May 2022 12:45:25 +0200 Subject: Permutacje komizernosc --- lic_malinka.tex | 58 +++++++++++++++++++++++++++++++++++++++++++++++++++------ 1 file changed, 52 insertions(+), 6 deletions(-) (limited to 'lic_malinka.tex') diff --git a/lic_malinka.tex b/lic_malinka.tex index d38f36e..fe992a1 100644 --- a/lic_malinka.tex +++ b/lic_malinka.tex @@ -648,20 +648,66 @@ \section{Conjugacy classes in automorphism groups} + TODO: + \begin{itemize} + \item w głównym dowodzie mogę użyć wprost AP, nie muszę tego uzasadniać + jeszcze raz. + \end{itemize} + + Let $M$ be a countable $L$-structure. We define a topology on the $G=\Aut(M)$: + for any finite function $f\colon M\to M$ we have a basic open set + $[f]_{G} = \{g\in G\mid f\subseteq g\}$. + \subsection{Prototype: pure set} In this section, $M=(M,=)$ is an infinite countable set (with no structure beyond equality). + \begin{proposition} - If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are conjugate if and only + If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are conjugate if and only if for each $n\in \bN\cup \{\aleph_0\}$, $f_1$ and $f_2$ have the same number of orbits of size $n$. \end{proposition} - \begin{proposition} The conjugacy class of $f\in \Aut(M)$ is dense if - and only if... \end{proposition} \begin{proposition} If $f\in - \Aut(M)$ has an infinite orbit, then the conjugacy class of $f$ is - meagre. - \end{proposition} + \begin{theorem} + Let $\sigma\in \Aut(M)$ be an automorphism with no infinite orbit and with + infinitely many orbits of size $n$ for every $n>0$. Then the conjugacy + class of $\sigma$ is comeagre in $\Aut(M)$. + \end{theorem} + + \begin{proof} + We will show that the conjugacy class of $\sigma$ is an intersection of countably + many comeagre sets. + + Let $A_n = \{\alpha\in Aut(M)\mid \alpha\text{ has infinitely many orbits of size }n\}$. + This set is comeagre for every $n>0$. Indeed, we can represent this set + as an intersection of countable family of open dense sets. Let $B_{n,k}$ + be the set of all finite functions $\beta\colon M\to M$ that consists + of exactly $k$ distinct $n$-cycles. Then: + \begin{align*} + A_n &= \{\alpha\in\ \Aut(M) \mid \alpha\text{ has infinitely many orbits of size }n\} \\ + &= \bigcap_{k=1}^{\infty} \{\alpha\in \Aut(M)\mid \alpha\text{ has at least }k\text{ orbits of size }n\} \\ + &= \bigcap_{k=1}^{\infty} \bigcup_{\beta\in B_{n,k}} [\beta]_{\Aut(M)}, + \end{align*} + where indeed, $\bigcup_{\beta\in B_{n,k}} [\beta]_{\Aut(M)}$ is dense in + $\Aut(M)$: take any finite $\gamma\colon M\to M$ such that $[\gamma]_{\Aut(M)}$ + is nonempty. Then also + $\bigcup_{\beta\in B_{n,k}} [\beta]_{\Aut(M)}\cap[\gamma]_{\Aut(M)}\neq\emptyset$, + one can easily construct a permutation that extends $\gamma$ and have at least + $k$ many $n$-cycles. + + Now we see that $A = \bigcap_{n=1}^{\infty} A_n$ is a comeagre set consisting + of all functions that have infinitely many $n$-cycles for each $n$. The only + thing left to show is that the set of functions with no infinite cycle is + also comeagre. Indeed, for $m\in M$ let + $B_m = \{\alpha\in\Aut(M)\mid m\text{ has finite orbit in }\alpha\}$. This + is an open dense set. It is a sum over basic open sets generated by finite + permutations with $m$ in their domain. Denseness is also easy to see. + + Finally, we can say that + $$\sigma^{\Aut(M)}=\bigcap_{n=1}^\infty A_n \cap \bigcap_{m\in M} B_m,$$ + which concludes the proof. + + \end{proof} % \begin{proposition} % An automorphism $f$ of $M$ is generic if and only if... -- cgit v1.2.3