aboutsummaryrefslogtreecommitdiff
path: root/sections/fraisse_classes.tex
diff options
context:
space:
mode:
Diffstat (limited to 'sections/fraisse_classes.tex')
-rw-r--r--sections/fraisse_classes.tex68
1 files changed, 50 insertions, 18 deletions
diff --git a/sections/fraisse_classes.tex b/sections/fraisse_classes.tex
index 32804f2..5e45400 100644
--- a/sections/fraisse_classes.tex
+++ b/sections/fraisse_classes.tex
@@ -486,32 +486,64 @@
Now, take any structures $A, B\in\cC$ such that $A\subseteq B$. Without the
loss of generality assume that $A = B\cap \Pi$. Let $\bar{A}\subseteq\Pi$
be the
- smallest structure closed under the automorphism $\sigma$ and containing $A$.
- It is finite, as $\cC$ is the age of $\Pi$. By the weak Hrushovski property,
- of $\cC$ let $(\bar{B}, \beta)$ be a structure extending
- $(B\cup \bar{A}, \sigma\upharpoonright_{\bar{A}})$. Again, we may assume
- that $B\cup \bar{A}\subseteq \bar{B}$. Then, by the fact that $\Pi$ is a
- Fraïssé limit of $\cD$ there is an embedding
- $f\colon(\bar{B}, \beta)\to(\Pi, \sigma)$
- such that the following diagram commutes:
+ smallest substructure closed under the automorphism
+ $\sigma$ and containing $A$. It is finitely generated, as $\cC$ is the age
+ of $\Pi$.
+ Let $C$ be a finitely generated structure such that
+ $\bar{A}\rightarrow C \leftarrow B$. Such structure exists by the JEP
+ of $\cC$. Again, we may assume without the loss of generality that
+ $\bar{A}\subseteq C$. Then $\sigma\upharpoonright_{\bar{A}}$ is a
+ partial isomorphism of $C$, hence by the WHP it can be extended to
+ a structure $(\bar{C}, \gamma)\in\cD$ such that
+ $\gamma\upharpoonright_{\bar{A}} = \sigma\upharpoonright_{\bar{A}}$.
+
+ Then, by the weak ultrahomogeneity of $(\Pi, \sigma)$ we can find an
+ embedding $g$ of $(\bar{C},\gamma)$ such that the following diagram commutes:
+
+ \begin{center}
+ \begin{tikzcd}
+ (\bar{A}, \sigma\upharpoonright_{\bar{A}}) \ar[d, "\subseteq"] \ar[r, "\subseteq"] & (\Pi, \sigma) \\
+ (\bar{C}, \gamma) \ar[ur, "g"'] &
+ \end{tikzcd}
+ \end{center}
- \begin{center}
- \begin{tikzcd}
- (A, \emptyset) \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & (\bar{A}, \sigma\upharpoonright_A) \arrow[d, "\subseteq"] \arrow[r, "\subseteq"] & (\Pi, \sigma) \\
- (B, \sigma\upharpoonright_B) \arrow[r, dashed, "\subseteq"'] & (\bar{B}, \beta) \arrow[ur, dashed, "f"]
- \end{tikzcd}
- \end{center}
- Then we simply get the following diagram:
+ Thus, we have that the following diagram commutes:
\begin{center}
\begin{tikzcd}
- A \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & \Pi \\
- B \arrow[ur, dashed, "f\upharpoonright_B"']
+ A \ar[r, "\subseteq"] \ar[d, "\subseteq"] & \bar{A} \ar[r, "\subseteq"] \ar[d, "\subseteq"] & \Pi \\
+ B \ar[r, "f"] & C \ar[r, "\subseteq"] & \bar{C} \ar[u, "g"] \\
\end{tikzcd}
\end{center}
- which proves that $\Pi$ is indeed a weakly ultrahomogeneous structure in $\cC$.
+ %
+ % By the weak Hrushovski property
+ % of $\cC$ let $(\bar{B}, \beta)$ be a structure extending
+ % $(B, \sigma\upharpoonright_{A})$. Again, we may assume
+ % that $B\cup \bar{A}\subseteq \bar{B}$. Then, by the fact that $\Pi$ is a
+ % Fraïssé limit of $\cD$ there is an embedding
+ % $f\colon(\bar{B}, \beta)\to(\Pi, \sigma)$
+ % such that the following diagram commutes:
+ %
+ %
+ % \begin{center}
+ % \begin{tikzcd}
+ % (A, \emptyset) \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & (\bar{A}, \sigma\upharpoonright_A) \arrow[d, "\subseteq"] \arrow[r, "\subseteq"] & (\Pi, \sigma) \\
+ % (B, \sigma\upharpoonright_B) \arrow[r, dashed, "\subseteq"'] & (\bar{B}, \beta) \arrow[ur, dashed, "f"]
+ % \end{tikzcd}
+ % \end{center}
+
+ % Then we simply get the following diagram:
+ %
+ % \begin{center}
+ % \begin{tikzcd}
+ % A \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & \Pi \\
+ % B \arrow[ur, dashed, "f\upharpoonright_B"']
+ % \end{tikzcd}
+ % \end{center}
+ %
+ which proves that $\Pi$ is indeed a weakly ultrahomogeneous structure.
Hence, it is isomorphic to $\Gamma$.
\end{proof}
\end{document}