aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--lic_malinka.pdfbin386727 -> 386018 bytes
-rw-r--r--lic_malinka.tex5
2 files changed, 2 insertions, 3 deletions
diff --git a/lic_malinka.pdf b/lic_malinka.pdf
index 2bd9a82..b5e7ed2 100644
--- a/lic_malinka.pdf
+++ b/lic_malinka.pdf
Binary files differ
diff --git a/lic_malinka.tex b/lic_malinka.tex
index e1a45b3..af116cd 100644
--- a/lic_malinka.tex
+++ b/lic_malinka.tex
@@ -582,9 +582,8 @@
Take any graphs $(A, \alpha), (B, \beta), (C,\gamma)$ such that $A$ embeds
into $B$ and $C$. Let $D$ be the amalgamation of $B$ and $C$ over $A$ as in
the proof for the plain graphs. We will define the automorphism
- $\delta\in\Aut(D)$ so it extends $\beta$ and $\gamma$. (TODO: chyba nie
- tylko extends ale coś więcej: wiem o co chodzi, ale nie wiem jak to
- napisać) We let $\delta_{\upharpoonright X} = \id_X$ for $X\in \{A,
+ $\delta\in\Aut(D)$ so it extends $\beta$ and $\gamma$.
+ We let $\delta_{\upharpoonright X} = \id_X$ for $X\in \{A,
B\setminus A, C\setminus B\}$. Let's check the definition is correct. In
order to do that, we have to show that for any $u, v\in
D\quad(uE_Dv\leftrightarrow \delta(u)E_D\delta(v))$. We have two cases: