diff options
author | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-03-19 21:02:59 +0100 |
---|---|---|
committer | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-03-19 21:02:59 +0100 |
commit | e79d66fdd62e06bff773562daa7c29c1cba91bcc (patch) | |
tree | ba3be9c9eebc26b38e9b155efd17fe9359720e8b /lic_malinka.tex | |
parent | e48745a4ecae399b000828b02ff69ec3ea4febef (diff) |
Definicje wkolo freissego
Diffstat (limited to 'lic_malinka.tex')
-rw-r--r-- | lic_malinka.tex | 750 |
1 files changed, 460 insertions, 290 deletions
diff --git a/lic_malinka.tex b/lic_malinka.tex index 62d1f7b..0dde9cd 100644 --- a/lic_malinka.tex +++ b/lic_malinka.tex @@ -1,96 +1,88 @@ -\documentclass[11pt, a4paper, final]{amsart}
-\setlength{\emergencystretch}{2em}
+\documentclass[11pt, a4paper, final]{amsart} \setlength{\emergencystretch}{2em}
+\usepackage[backend=biber]{biblatex}
+\addbibresource{licmalinka.bib}
-\usepackage[T1]{fontenc}
-\usepackage{mathtools}
+
+\usepackage[T1]{fontenc} \usepackage{mathtools}
\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,stretch=10,shrink=10]{microtype}
\microtypecontext{spacing=nonfrench}
% \usepackage[utf8]{inputenc}
-\usepackage{amsfonts}
-\usepackage{amsmath}
+\usepackage{amsfonts}
+\usepackage{amsmath}
\usepackage{amssymb}
-\usepackage{amsthm}
-\usepackage{XCharter}
-\usepackage[charter,expert, greekuppercase=italicized, greekfamily=didot]{mathdesign}
-\usepackage{mathtools}
-\usepackage{enumitem}
+\usepackage{amsthm}
+\usepackage{XCharter}
+\usepackage[charter, expert, greekuppercase=italicized, greekfamily=didot]{mathdesign}
+\usepackage{mathtools}
+\usepackage{enumitem}
\usepackage[utf8]{inputenc}
-\usepackage{tikz-cd}
+\usepackage{tikz-cd}
\usepackage{tikz}
+\usetikzlibrary{arrows,arrows.meta}
+\tikzcdset{arrow style=tikz, diagrams={>=latex}}
-\usepackage{etoolbox}
+\usepackage{etoolbox}
-\usepackage{xcolor}
+\usepackage{xcolor}
\definecolor{green}{RGB}{0,127,0}
-\definecolor{redd}{RGB}{191,0,0}
+\definecolor{redd}{RGB}{191,0,0}
+
\definecolor{red}{RGB}{105,89,205}
\usepackage[colorlinks=true]{hyperref}
-\usepackage[notref, notcite]{showkeys}
+\usepackage[notref, notcite]{showkeys}
\usepackage[cmtip,arrow]{xy}
-%\usepackage[backend=biber,
-%url=false,
-%isbn=false,
-%backref=true,
-%citestyle=alphabetic,
-%bibstyle=alphabetic,
-%autocite=inline,
-%maxnames=99,
-%minalphanames=4,
-%maxalphanames=4,
-%sorting=nyt,]{biblatex}
-%\addbibresource{linear_strucures.bib}
-
-\DeclareMathOperator{\Aut}{Aut}
+
+\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Hom}{Hom}
-\DeclareMathOperator{\Stab}{Stab}
+\DeclareMathOperator{\Stab}{Stab}
\DeclareMathOperator{\st}{st}
-\DeclareMathOperator{\Flim}{FLim}
+\DeclareMathOperator{\Flim}{FLim}
\DeclareMathOperator{\Int}{{Int}}
-\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}}
-\newcommand{\cC}{\mathcal C}
-\newcommand{\cV}{\mathcal{V}}
+\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}}
+\newcommand{\cC}{\mathcal C}
+\newcommand{\cV}{\mathcal{V}}
\newcommand{\cU}{\mathcal{U}}
-\newcommand{\bN}{\mathbb N}
+\newcommand{\bN}{\mathbb N}
\newcommand{\bR}{\mathbb R}
-\newcommand{\bZ}{\mathbb Z}
+\newcommand{\bZ}{\mathbb Z}
\newcommand{\bQ}{\mathbb Q}
+\newcommand{\bK}{\mathbb K}
-\DeclareMathOperator{\im}{{Im}}
+\DeclareMathOperator{\im}{{Im}}
\DeclareMathOperator{\lin}{{Lin}}
\DeclareMathOperator{\Th}{{Th}}
-\newtheorem{theorem}{Theorem}
+\newtheorem{theorem}{Theorem}
\numberwithin{theorem}{section}
-\newtheorem{lemma}[theorem]{Lemma}
+\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{claim}[theorem]{Claim}
-\newtheorem{fact}[theorem]{Fact}
+\newtheorem{fact}[theorem]{Fact}
\newtheorem{proposition}[theorem]{Proposition}
-\newtheorem{conjecture}[theorem]{Conjecture}
+\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{axiom}[theorem]{Axiom}
\newtheorem{question}[theorem]{Question}
-\newtheorem{corollary}[theorem]{Corollary}
+\newtheorem{corollary}[theorem]{Corollary}
\newtheorem*{theorem2}{Theorem}
-\newtheorem*{claim2}{Claim}
+\newtheorem*{claim2}{Claim}
\newtheorem*{corollary2}{Corollary}
-\newtheorem*{question2}{Question}
+\newtheorem*{question2}{Question}
\newtheorem*{conjecture2}{Conjecture}
-\newtheorem{clm}{Claim}
-\newtheorem*{clm*}{Claim}
+\newtheorem{clm}{Claim} \newtheorem*{clm*}{Claim}
-\theoremstyle{definition}
+\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
-\newtheorem*{definition2}{Definition}
+\newtheorem*{definition2}{Definition}
\newtheorem{example}[theorem]{Example}
-\theoremstyle{remark}
+\theoremstyle{remark}
\newtheorem{remark}[theorem]{Remark}
\newtheorem*{remark2}{Remark}
@@ -98,248 +90,426 @@ \AtEndEnvironment{proof}{\setcounter{clm}{0}}
\newenvironment{clmproof}[1][\proofname]{\proof[#1]\renewcommand{\qedsymbol}{$\square$(claim)}}{\endproof}
-\newcommand{\xqed}[1]{%
- \leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
- \quad\hbox{\ensuremath{#1}}}
+\newcommand{\xqed}[1]{% \leavevmode\unskip\penalty9999 \hbox{}\nobreak\hfill
+ \quad\hbox{\ensuremath{#1}}}
-\title{Tytuł}
+\title{Tytuł}
\author{Franciszek Malinka}
\begin{document}
-
- \begin{abstract}
- Abstract
- \end{abstract}
- \section{Introduction}
-
- \section{Preliminaries}
- \subsection{Descriptive set theory}
- \begin{definition}
- Suppose $X$ is a topological space and $A\subseteq X$. We say that $A$ is \emph{meagre} in $X$ if $A = \bigcup_{n\in\bN}A_n$, where $A_n$ are nowhere dense subsets of $X$ (i.e. $\Int(\bar{A_n}) = \emptyset$).
- \end{definition}
-
- \begin{definition}
- We say that $A$ is \emph{comeagre} in $X$ if it is a complement of a meagre set. Equivalently, a set is comeagre iff it contains a countable intersection of open dense sets.
- \end{definition}
-
- % \begin{example}
- Every countable set is meagre in any $T_1$ space, so, for example, $\bQ$ is meagre in $\bR$ (though being dense), which means that the set of irrationals is comeagre. Another example is...
- % \end{example}
-
- \begin{definition}
- We say that a topological space $X$ is a \emph{Baire space} if every comeagre subset of $X$ is dense in $X$ (equivalently, every meagre set has empty interior).
- \end{definition}
-
- \begin{definition}
- Suppose $X$ is a Baire space. We say that a property $P$ \emph{holds generically} for a point in $x\in X$ if $\{x\in X\mid P\textrm{ holds for }x\}$ is comeagre in $X$.
- \end{definition}
-
- \begin{definition}
- Let $X$ be a nonempty topological space and let $A\subseteq X$. The \emph{Banach-Mazur game of $A$}, denoted as $G^{\star\star}(A)$ is defined as follows: Players $I$ and $\textit{II}$ take turns in playing nonempty open sets $U_0, V_0, U_1, V_1,\ldots$ such that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq\ldots$. We say that player $\textit{II}$ wins the game if $\bigcap_{n}V_n \subseteq A$.
- \end{definition}
-
- There is an important theorem on the Banach-Mazur game: $A$ is comeagre
- iff $\textit{II}$ can always choose sets $V_0, V_1, \ldots$ such that it wins. Before we prove it we need to define notions necessary to formalise and prove the theorem.
-
- \begin{definition}
- $T$ is \emph{the tree of all legal positions} in the Banach-Mazur game $G^{\star\star}(A)$ when $T$ consists of all finite sequences $(W_0, W_1,\ldots, W_n)$, where $W_i$ are nonempty open sets such that $W_0\supseteq W_1\supseteq\ldots\supseteq W_n$. In another words, $T$ is a pruned tree on $\{W\subseteq X\mid W \textrm{is open nonempty}\}$.
-
- \end{definition}
-
- \begin{definition}
- We say that $\sigma$ is \emph{a pruned subtree} of the tree of all legal positions $T$ if $\sigma\subseteq T$ and for any $(W_0, W_1, \ldots, W_n)\in\sigma, n\ge 0$ there is a $W$ such that $(W_0, W_1,\ldots, W_n, W)\in\sigma$ (it simply means that there's no finite branch in~$\sigma$).
- \end{definition}
-
- \begin{definition}
- Let $\sigma$ be a pruned subtree of the tree of all legal positions $T$. By $[\sigma]$ we denote \emph{the set of all infinite branches of $\sigma$}, i.e. infinite sequences $(W_0, W_1, \ldots)$ such that $(W_0, W_1, \ldots W_n)\in \sigma$ for any $n\in \bN$.
- \end{definition}
-
- \begin{definition}
- A \emph{strategy} for $\textit{II}$ in $G^{\star\star}(A)$ is a pruned subtree $\sigma\subseteq T$ such that
- \begin{enumerate}[label=(\roman*)]
- \item $\sigma$ is nonempty,
- \item if $(U_0, V_0, \ldots, U_n, V_n)\in\sigma$, then for all open nonempty $U_{n+1}\subseteq V_n$, $(U_0, V_0, \ldots, U_n, V_n, U_{n+1})\in\sigma$,
- \item if $(U_0, V_0, \ldots, U_{n})\in\sigma$, then for a unique $V_n$, $(U_0, V_0, \ldots, U_{n}, V_n)\in\sigma$.
- \end{enumerate}
- \end{definition}
-
- Intuitively, a strategy $\sigma$ works as follows: $I$ starts playing $U_0$ as any open subset of $X$, then $\textit{II}$ plays unique (by (iii)) $V_0$ such that $(U_0, V_0)\in\sigma$. Then $I$ responds by playing any $U_1\subseteq V_0$ and $\textit{II}$ plays uniqe $V_1$ such that $(U_0, V_0, U_1, V_1)\in\sigma$, etc.
-
- \begin{definition}
- A strategy $\sigma$ is a \emph{winning strategy for $\textit{II}$} if for any game $(U_0, V_0\ldots)\in [\sigma]$ player $\textit{II}$ wins, i.e. $\bigcap_{n}V_n \subseteq A$.
- \end{definition}
-
- Now we can state the key theorem.
-
- \begin{theorem}[Banach-Mazur, Oxtoby]
- \label{theorem:banach_mazur_thm}
- Let $X$ be a nonempty topological space and let $A\subseteq X$. Then A is comeagre $\Leftrightarrow$ $\textit{II}$ has a winning strategy in $G^{\star\star}(A)$.
- \end{theorem}
-
- In order to prove it we add an auxilary definition and lemma.
- \begin{definition}
- Let $S\subseteq\sigma$ be a pruned subtree of tree of all legal positions $T$ and let $p=(U_0, V_0,\ldots, V_n)\in S$. We say that S is \emph{comprehensive for p} if the family $\cV_p = \{V_{n+1}\mid (U_0, V_0,\ldots, V_n, U_{n+1}, V_{n+1})\in S\}$ (it may be that $n=-1$, which means $p=\emptyset$) is pairwise disjoint and $\bigcup\cV_p$ is dense in $V_n$ (where we think that $V_{-1} = X$).
-
- We say that $S$ is \emph{comprehensive} if it is comprehensive for each $p=(U_0, V_0,\ldots, V_n)\in S$.
- \end{definition}
-
- \begin{fact}
- If $\sigma$ is a winnig strategy for $\mathit{II}$ then there exists a nonempty comprehensive $S\subseteq\sigma$.
- \end{fact}
-
- \begin{proof}
- We construct $S$ recursively as follows:
- \begin{enumerate}
- \item $\emptyset\in S$,
- \item if $(U_0, V_0, \ldots, U_n)\in S$, then $(U_0, V_0, \ldots, U_n, V_n)\in S$ for the unique $V_n$ given by the strategy $\sigma$,
- \item let $p = (U_0, V_0, \ldots, V_n)\in S$. For a possible player $I$'s move $U_{n+1}\subseteq V_n$ let $U^\star_{n+1}$ be the unique set player $\mathit{II}$ would respond with by $\sigma$. Now, by Zorn's Lemma, let $\cU_p$ be a maximal collection of nonempty open subsets $U_{n+1}\subseteq V_n$ such that the set $\{U^\star_{n+1}\mid U_{n+1}\in\cU_p\}$ is pairwise disjoint. Then put in $S$ all $(U_0, V_0, \ldots, V_{n}, U_{n+1})$ such that $U_{n+1} \in \cU_p$. This way $S$ is comprehensive for $p$: the family $\cV_p = \{V_{n+1}\mid (U_0, V_0,\ldots, V_n, U_{n+1}, V_{n+1})\in S\}$ is exactly $\{U^\star_{n+1}\mid U_{n+1}\in\cU_p\}$, which is pairwise disjoint and $\bigcup\cV_p$ is obviously dense in $V_n$ by the maximality of $\cU_p$ -- if there was any open set $\tilde{U}_{n+1}\subseteq V_n$ disjoint from $\bigcup\cV_p$, then $\tilde{U}^{\star}_{n+1}\subseteq \tilde{U}_{n+1}$ would be also disjoint from $\bigcup\cV_p$, so the family $\cU_p\cup\{\tilde{U}_{n+1}\}$ would violate the maximality of $\cU_p$ .
- \qedhere
- \end{enumerate}
- \end{proof}
-
- \begin{lemma}
- \label{lemma:comprehensive_lemma}
- Let $S$ be a nonempty comprehensive pruned subtree of a strategy $\sigma$. Then:
- \begin{enumerate}[label=(\roman*)]
- \item For any open $V_n\subseteq X$ there is at most one $p=(U_0, V_0, \ldots, U_n, V_n)\in S$.
- \item Let $S_n = \{V_n\mid (U_0, V_0, \ldots, V_n)\in S\}$ for $n\in\bN$ (i.e. $S_n$ is a family of all possible choices player $\textit{II}$ can make in its $n$-th move according to $S$). Then $\bigcup S_n$ is open and dense in $X$.
- \item $S_n$ is a family of pairwise disjoint sets.
- \end{enumerate}
- \end{lemma}
-
- \begin{proof}
- (i): Suppose that there are some $p = (U_0, V_0,\ldots, U_n, V_n)$, $p'=(U'_0, V'_0, \ldots, U'_n, V'_n)$ such that $V_n = V'_n$ and $p \neq p'$. Let $k$ be the smallest index such that those sequences differ. We have two possibilities:
- \begin{itemize}
- \item $U_k = U'_k$ and $V_k\neq V'_k$ -- this cannot be true simply by the fact that $S$ is a subset of a strategy (so $V_k$ is unique for $U_k$).
- \item $U_k\neq U'_k$: by the comprehensiveness of $S$ we know that for $q =(U_0, V_0, \ldots, U_{k-1}, V_{k-1})$ the set $\cV_q$ is pairwise disjoint. Thus $V_k\cap V'_k=\emptyset$, because $V_k, V'_k\in \cV_q$. But this leads to a contradiction -- $V_n$ cannot be a nonempty subset of both $V_k, V'_k$.
- \end{itemize}
-
- (ii): The lemma is proved by induction on $n$. For $n=0$ it follows trivially from the definition of comprehensiveness. Now suppose the lemma is true for $n$. Then the set $\bigcup_{V_n\in S_n}\bigcup\cV_{p_{V_n}}$ (where $p_{V_n}$ is given uniquely from (i)) is dense and open in $X$ by the induction hypothesis. But $\bigcup S_{n+1}$ is exactly this set, thus it is dense and open in $X$.
-
- (iii): We will prove it by induction on $n$. Once again, the case $n = 0$ follows from the comprehensiveness of $S$. Now suppose that the sets in $S_n$ are pairwise disjoint. Take some $x \in V_{n+1}\in S_{n+1}$. Of course $\bigcup S_n \supseteq \bigcup S_{n+1}$, thus by the inductive hypothesis $x\in V_{n}$ for the unique $V_n\in S_n$. It must be that $V_{n+1}\in \cV_{p_{V_n}}$, because $V_n$ is the only superset of $V_{n+1}$ in $S_n$. But $\cV_{p_{V_n}}$ is disjoint, so there is no other $V'_{n+1}\in \cV_{p_{V_n}}$ suc h that $x\in V'_{n+1}$. Moreover, there is no such set in $S_{n+1}\setminus\cV_{p_{V_n}}$, because those sets are disjoint from $V_{n}$. Hence there is no $V'_{n+1}\in S_{n+1}$ other than $V_n$ such that $x\in V'_{n+1}$. We chosed $x$ and $V_{n+1}$ arbitrarily, so $S_{n+1}$ is pairwise disjoint.
- \end{proof}
-
- Now we can move to the proof of the Banach-Mazur theorem.
-
- \begin{proof}[Proof of theorem \ref{theorem:banach_mazur_thm}]
- $\Rightarrow$: Let $(A_n)$ be a sequence of dense open sets with $\bigcap_n A_n\subseteq A$. The simply $\textit{II}$ plays $V_n = U_n\cap A_n$, which is nonempty by the denseness of $A_n$.
-
- $\Leftarrow$: Suppose $\textit{II}$ has a winning strategy $\sigma$. We will show that $A$ is comeagre. Take a comprehensive $S\subseteq \sigma$. We claim that $\mathcal{S} = \bigcap_n\bigcup S_n \subseteq A$. By the lemma~\ref{lemma:comprehensive_lemma}, (ii) sets $\bigcup S_n$ are open and dense, thus $A$ must be comeagre. Now we prove the claim towards contradiction.
-
- Suppose there is $x\in \mathcal{S}\setminus A$. By the lemma \ref{lemma:comprehensive_lemma}, (iii) for any $n$ there is unique $x\in V_n\in S_n$. It follows that $p_{V_0}\subset p_{V_1}\subset\ldots$. Now the game $(U_0, V_0, U_1, V_1,\ldots) = \bigcup_n p_{V_n}\in [S]\subseteq [\sigma]$ is not winning for player $\textit{II}$, which contradicts the assumption that $\sigma$ is a winning strategy.
- \end{proof}
-
- % Pytania:
- % \begin{itemize}
- % \item Czy da się coś zrobić, żeby $\mathcal{V}$ nie było takie brzydkie?
- % \item Jak to napisać, że się zrzyna z książki?
- % \item Dodatkowy przykład pod def 2.2
- % \item DONE W/E $G^{\star\star}(A)$ czy $G^{**}(A)$? Czy może $G^{**}(X, A)?$ Jakiś skrót na to?
- % \item w \ref{lemma:comprehensive_lemma} (i), jak to ładniej sformułować?
- % \item w \ref{lemma:comprehensive_lemma} (iii), może to wyodrębnić? Może to dać jako pierwsze, a pierwsze dwa później?
- % \item DONE dodać tytuł do \ref{theorem:banach_mazur_thm}
- % \item czy w dowodzie twierdzenia napisać jeszcze raz co to jest $W_n$?
- % \item DONE TAK ostatni akapit dowodu twierdzenia, czy taka suma tych $p_{V_n}$ to jest sensowny napis? Jak to inaczej napisać?
- % \end{itemize}
-
- % Odpowiedzi:
- % \begin{itemize}
- % % \item dodać osobną definicję na $[\sigma]$ (tzn dla dowolnego poddrzewa).
- % \item $II$ -> $\mathit{II}$
- % \item w ogóle dodać def poddrzewa (co to znaczy pruned?)
- % \item w \ref{lemma:comprehensive_lemma} (i) zmienić na "dla każdego otwartego podzbioru X jest co najwyżej jedno takie p"
- % \item powiedzieć że S musi być niepuste
- % \item w \ref{lemma:comprehensive_lemma} zamienić kolejność w pierwszym zdaniu gwiazdki z nie-gwiazdką
- % \item zmienić $W_n -> S_n$
- % \item rozwinąć \ref{lemma:comprehensive_lemma} (ii), poza tym $W_{n+1}$ jest dokładnie równy, a nie tylko superset, dodać kwantyfikator na n, a może wplecić jeszcze to że te rodziny $W_n$ też są rozłączne?
- % \end{itemize}
-
- \begin{corollary}
- \label{corollary:banach-mazur-basis}
- If we add a constraint to the Banach-Mazur game such that players can only choose basic open sets, then the theorem \ref{theorem:banach_mazur_thm} still suffices.
- \end{corollary}
-
- \begin{proof}
- If one adds the word \textit{basic} before each occurance of word \textit{open} in previous proofs and theorems then they all will still be valid (except for $\Rightarrow$, but its an easy fix -- take $V_n$ a basic open subset of $U_n\cap A_n$).
- \end{proof}
-
- This corollary will be important in using the theorem in practice -- it's much easier to work with basic open sets rather than any open sets.
-
- \subsection{Fraïssé classes}
- \begin{fact}[Fraïssé theorem]
- \label{fact:fraisse_thm}
- % Suppose $\cC$ is a class of finitely generated $L$-structures such that...
-
- Then there exists a unique up to isomorphism countable $L$-structure $M$ such that...
- \end{fact}
-
- \begin{definition}
- For $\cC$, $M$ as in Fact~\ref{fact:fraisse_thm}, we write $\Flim(\cC)\coloneqq M$.
- \end{definition}
-
- \begin{fact}
- If $\cC$ is a uniformly locally finite Fraïssé class, then $\Flim(\cC)$ is $\aleph_0$-categorical and has quantifier elimination.
- \end{fact}
-
- \section{Conjugacy classes in automorphism groups}
-
- \subsection{Prototype: pure set}
- In this section, $M=(M,=)$ is an infinite countable set (with no structure beyond equality).
- \begin{proposition}
- If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are conjugate if and only if for each $n\in \bN\cup \{\aleph_0\}$, $f_1$ and $f_2$ have the same number of orbits of size $n$.
- \end{proposition}
-
- \begin{proposition}
- The conjugacy class of $f\in \Aut(M)$ is dense if and only if...
- \end{proposition}
- \begin{proposition}
- If $f\in \Aut(M)$ has an infinite orbit, then the conjugacy class of $f$ is meagre.
- \end{proposition}
-
- \begin{proposition}
- An automorphism $f$ of $M$ is generic if and only if...
- \end{proposition}
-
- \begin{proof}
-
- \end{proof}
-
- \subsection{More general structures}
-
-
- \begin{proposition}
- Suppose $M$ is an arbitrary structure and $f_1,f_2\in \Aut(M)$. Then $f_1$ and $f_2$ are conjugate if and only if $(M,f_1)\cong (M,f_2)$.
- \end{proposition}
-
- \begin{definition}
- We say that a Fraïssé class $\cC$ has \emph{weak Hrushovski property} (\emph{WHP}) if for every $A\in \cC$ and partial automorphism $p\colon A\to A$, there is some $B\in \cC$ such that $p$ can be extended to an automorphism of $B$, i.e.\ there is an embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following diagram commutes:
- \begin{center}
- \begin{tikzcd}
- B\ar[r,"\bar p"]&B\\
- A\ar[u,"i"]\ar[r,"p"]&A\ar[u,"i"]
- \end{tikzcd}
- \end{center}
- \end{definition}
-
- \begin{proposition}
- Suppose $\cC$ is a Fraïssé class in a relational language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$, all orbits of $f$ are finite.
- \end{proposition}
- \begin{proposition}
- Suppose $\cC$ is a Fraïssé class in an arbitrary countable language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$ ...
- \end{proposition}
-
- \subsection{Random graph}
- \begin{definition}
- The \emph{random graph} is...
- \end{definition}
-
- \begin{fact}
- The
- \end{fact}
-
- \begin{proposition}
- Generically, the set of fixed points of $f\in \Aut(M)$ is isomorphic to $M$ (as a graph).
- \end{proposition}
-
-\end{document}
\ No newline at end of file + \begin{abstract}
+ Abstract
+ \end{abstract}
+ \section{Introduction}
+
+ \section{Preliminaries}
+ \subsection{Descriptive set theory}
+ \begin{definition}
+ Suppose $X$ is a topological space and $A\subseteq X$.
+ We say that $A$ is \emph{meagre} in $X$ if $A = \bigcup_{n\in\bN}A_n$,
+ where $A_n$ are nowhere dense subsets of $X$ (i.e. $\Int(\bar{A_n})
+ = \emptyset$).
+ \end{definition}
+
+ \begin{definition}
+ We say that $A$ is \emph{comeagre} in $X$ if it is
+ a complement of a meagre set. Equivalently, a set is comeagre iff it
+ contains a countable intersection of open dense sets.
+ \end{definition}
+
+ % \begin{example}
+ Every countable set is meagre in any $T_1$ space, so, for example, $\bQ$
+ is meagre in $\bR$ (though being dense), which means that the set of
+ irrationals is comeagre. Another example is...
+ % \end{example}
+
+ \begin{definition}
+ We say that a topological space $X$ is a \emph{Baire space} if every
+ comeagre subset of $X$ is dense in $X$ (equivalently, every meagre set has
+ empty interior).
+ \end{definition}
+
+ \begin{definition}
+ Suppose $X$ is a Baire space. We say that a property $P$ \emph{holds
+ generically} for a point in $x\in X$ if $\{x\in X\mid P\textrm{ holds for
+ }x\}$ is comeagre in $X$.
+ \end{definition}
+
+ \begin{definition} Let $X$ be a nonempty topological space and let
+ $A\subseteq X$. The \emph{Banach-Mazur game of $A$}, denoted as
+ $G^{\star\star}(A)$ is defined as follows: Players $I$ and
+ $\textit{II}$ take turns in playing nonempty open sets $U_0, V_0,
+ U_1, V_1,\ldots$ such that $U_0 \supseteq V_0 \supseteq U_1 \supseteq
+ V_1 \supseteq\ldots$. We say that player $\textit{II}$ wins the game if
+ $\bigcap_{n}V_n \subseteq A$.
+ \end{definition}
+
+ There is an important theorem on the Banach-Mazur game: $A$ is comeagre
+ iff $\textit{II}$ can always choose sets $V_0, V_1, \ldots$ such that
+ it wins. Before we prove it we need to define notions necessary to
+ formalise and prove the theorem.
+
+ \begin{definition}
+ $T$ is \emph{the tree of all legal positions} in the Banach-Mazur game
+ $G^{\star\star}(A)$ when $T$ consists of all finite sequences $(W_0,
+ W_1,\ldots, W_n)$, where $W_i$ are nonempty open sets such that
+ $W_0\supseteq W_1\supseteq\ldots\supseteq W_n$. In another words, $T$ is
+ a pruned tree on $\{W\subseteq X\mid W \textrm{is open nonempty}\}$.
+ \end{definition}
+
+ \begin{definition}
+ We say that $\sigma$ is \emph{a pruned subtree} of the tree of all legal
+ positions $T$ if $\sigma\subseteq T$ and for any $(W_0, W_1, \ldots,
+ W_n)\in\sigma, n\ge 0$ there is a $W$ such that $(W_0, W_1,\ldots, W_n,
+ W)\in\sigma$ (it simply means that there's no finite branch in~$\sigma$).
+ \end{definition}
+
+ \begin{definition}
+ Let $\sigma$ be a pruned subtree of the tree of all legal positions $T$. By
+ $[\sigma]$ we denote \emph{the set of all infinite branches of $\sigma$},
+ i.e. infinite sequences $(W_0, W_1, \ldots)$ such that $(W_0, W_1, \ldots
+ W_n)\in \sigma$ for any $n\in \bN$.
+ \end{definition}
+
+ \begin{definition}
+ A \emph{strategy} for $\textit{II}$ in
+ $G^{\star\star}(A)$ is a pruned subtree $\sigma\subseteq T$ such that
+ \begin{enumerate}[label=(\roman*)]
+ \item $\sigma$ is nonempty,
+ \item if $(U_0, V_0, \ldots, U_n, V_n)\in\sigma$, then for all open
+ nonempty $U_{n+1}\subseteq V_n$, $(U_0, V_0, \ldots, U_n, V_n,
+ U_{n+1})\in\sigma$,
+ \item if $(U_0, V_0, \ldots, U_{n})\in\sigma$, then for a unique $V_n$,
+ $(U_0, V_0, \ldots, U_{n}, V_n)\in\sigma$.
+ \end{enumerate}
+ \end{definition}
+
+ Intuitively, a strategy $\sigma$ works as follows: $I$ starts playing
+ $U_0$ as any open subset of $X$, then $\textit{II}$ plays unique (by
+ (iii)) $V_0$ such that $(U_0, V_0)\in\sigma$. Then $I$ responds by
+ playing any $U_1\subseteq V_0$ and $\textit{II}$ plays uniqe $V_1$
+ such that $(U_0, V_0, U_1, V_1)\in\sigma$, etc.
+
+ \begin{definition}
+ A strategy $\sigma$ is a \emph{winning strategy for $\textit{II}$} if for
+ any game $(U_0, V_0\ldots)\in [\sigma]$ player $\textit{II}$ wins, i.e.
+ $\bigcap_{n}V_n \subseteq A$.
+ \end{definition}
+
+ Now we can state the key theorem.
+
+ \begin{theorem}[Banach-Mazur, Oxtoby]
+ \label{theorem:banach_mazur_thm}
+ Let $X$ be a nonempty topological space and let $A\subseteq X$. Then A is
+ comeagre $\Leftrightarrow$ $\textit{II}$ has a winning strategy in
+ $G^{\star\star}(A)$.
+ \end{theorem}
+
+ In order to prove it we add an auxilary definition and lemma.
+ \begin{definition}
+ Let $S\subseteq\sigma$ be a pruned subtree of tree of all legal positions
+ $T$ and let $p=(U_0, V_0,\ldots, V_n)\in S$. We say that S is
+ \emph{comprehensive for p} if the family $\cV_p = \{V_{n+1}\mid (U_0,
+ V_0,\ldots, V_n, U_{n+1}, V_{n+1})\in S\}$ (it may be that $n=-1$, which
+ means $p=\emptyset$) is pairwise disjoint and $\bigcup\cV_p$ is dense in
+ $V_n$ (where we think that $V_{-1} = X$).
+ We say that $S$ is \emph{comprehensive} if it is comprehensive for
+ each $p=(U_0, V_0,\ldots, V_n)\in S$.
+ \end{definition}
+
+ \begin{fact}
+ If $\sigma$ is a winnig strategy for $\mathit{II}$ then
+ there exists a nonempty comprehensive $S\subseteq\sigma$.
+ \end{fact}
+
+ \begin{proof}
+ We construct $S$ recursively as follows:
+ \begin{enumerate}
+ \item $\emptyset\in S$,
+ \item if $(U_0, V_0, \ldots, U_n)\in S$, then $(U_0, V_0, \ldots, U_n,
+ V_n)\in S$ for the unique $V_n$ given by the strategy $\sigma$,
+ \item let $p = (U_0, V_0, \ldots, V_n)\in S$. For a possible player $I$'s
+ move $U_{n+1}\subseteq V_n$ let $U^\star_{n+1}$ be the unique set
+ player $\mathit{II}$ would respond with by $\sigma$. Now, by Zorn's
+ Lemma, let $\cU_p$ be a maximal collection of nonempty open subsets
+ $U_{n+1}\subseteq V_n$ such that the set $\{U^\star_{n+1}\mid
+ U_{n+1}\in\cU_p\}$ is pairwise disjoint. Then put in $S$ all $(U_0,
+ V_0, \ldots, V_{n}, U_{n+1})$ such that $U_{n+1} \in \cU_p$. This way
+ $S$ is comprehensive for $p$: the family $\cV_p = \{V_{n+1}\mid (U_0,
+ V_0,\ldots, V_n, U_{n+1}, V_{n+1})\in S\}$ is exactly
+ $\{U^\star_{n+1}\mid U_{n+1}\in\cU_p\}$, which is pairwise disjoint and
+ $\bigcup\cV_p$ is obviously dense in $V_n$ by the maximality of $\cU_p$
+ -- if there was any open set $\tilde{U}_{n+1}\subseteq V_n$ disjoint
+ from $\bigcup\cV_p$, then $\tilde{U}^{\star}_{n+1}\subseteq
+ \tilde{U}_{n+1}$ would be also disjoint from $\bigcup\cV_p$, so the
+ family $\cU_p\cup\{\tilde{U}_{n+1}\}$ would violate the maximality of
+ $\cU_p$.
+ \qedhere
+ \end{enumerate}
+ \end{proof}
+
+ \begin{lemma}
+ \label{lemma:comprehensive_lemma}
+ Let $S$ be a nonempty comprehensive pruned subtree of a strategy $\sigma$.
+ Then:
+ \begin{enumerate}[label=(\roman*)]
+ \item For any open $V_n\subseteq X$ there is at most one $p=(U_0, V_0,
+ \ldots, U_n, V_n)\in S$.
+ \item Let $S_n = \{V_n\mid (U_0, V_0, \ldots, V_n)\in S\}$ for $n\in\bN$
+ (i.e. $S_n$ is a family of all possible choices player $\textit{II}$
+ can make in its $n$-th move according to $S$). Then $\bigcup S_n$ is
+ open and dense in $X$.
+ \item $S_n$ is a family of pairwise disjoint sets.
+ \end{enumerate}
+ \end{lemma}
+
+ \begin{proof}
+ (i): Suppose that there are some $p = (U_0, V_0,\ldots,
+ U_n, V_n)$, $p'=(U'_0, V'_0, \ldots, U'_n, V'_n)$ such that $V_n
+ = V'_n$ and $p \neq p'$. Let $k$ be the smallest index such that those
+ sequences differ. We have two possibilities:
+ \begin{itemize}
+ \item $U_k = U'_k$ and $V_k\neq V'_k$ -- this cannot be true simply by
+ the fact that $S$ is a subset of a strategy (so $V_k$ is unique for
+ $U_k$). \item $U_k\neq U'_k$: by the comprehensiveness of $S$ we know
+ that for $q =(U_0, V_0, \ldots, U_{k-1}, V_{k-1})$ the set $\cV_q$ is
+ pairwise disjoint. Thus $V_k\cap V'_k=\emptyset$, because $V_k, V'_k\in
+ \cV_q$. But this leads to a contradiction -- $V_n$ cannot be a nonempty
+ subset of both $V_k, V'_k$.
+ \end{itemize}
+
+ (ii): The lemma is proved by induction on $n$. For $n=0$ it follows
+ trivially from the definition of comprehensiveness. Now suppose the
+ lemma is true for $n$. Then the set $\bigcup_{V_n\in
+ S_n}\bigcup\cV_{p_{V_n}}$ (where $p_{V_n}$ is given uniquely from
+ (i)) is dense and open in $X$ by the induction hypothesis. But
+ $\bigcup S_{n+1}$ is exactly this set, thus it is dense and open in
+ $X$.
+
+ (iii): We will prove it by induction on $n$. Once again, the case $n
+ = 0$ follows from the comprehensiveness of $S$. Now suppose that the
+ sets in $S_n$ are pairwise disjoint. Take some $x \in V_{n+1}\in
+ S_{n+1}$. Of course $\bigcup S_n \supseteq \bigcup S_{n+1}$, thus by
+ the inductive hypothesis $x\in V_{n}$ for the unique $V_n\in S_n$. It
+ must be that $V_{n+1}\in \cV_{p_{V_n}}$, because $V_n$ is the only
+ superset of $V_{n+1}$ in $S_n$. But $\cV_{p_{V_n}}$ is disjoint, so
+ there is no other $V'_{n+1}\in \cV_{p_{V_n}}$ suc h that $x\in
+ V'_{n+1}$. Moreover, there is no such set in
+ $S_{n+1}\setminus\cV_{p_{V_n}}$, because those sets are disjoint from
+ $V_{n}$. Hence there is no $V'_{n+1}\in S_{n+1}$ other than $V_n$
+ such that $x\in V'_{n+1}$. We've chosen $x$ and $V_{n+1}$ arbitrarily,
+ so $S_{n+1}$ is pairwise disjoint.
+ \end{proof}
+
+ Now we can move to the proof of the Banach-Mazur theorem.
+
+ \begin{proof}[Proof of theorem \ref{theorem:banach_mazur_thm}]
+ $\Rightarrow$: Let $(A_n)$ be a sequence of dense open sets with
+ $\bigcap_n A_n\subseteq A$. The simply $\textit{II}$ plays $V_n
+ = U_n\cap A_n$, which is nonempty by the denseness of $A_n$.
+
+ $\Leftarrow$: Suppose $\textit{II}$ has a winning strategy $\sigma$.
+ We will show that $A$ is comeagre. Take a comprehensive $S\subseteq
+ \sigma$. We claim that $\mathcal{S} = \bigcap_n\bigcup S_n \subseteq
+ A$. By the lemma~\ref{lemma:comprehensive_lemma}, (ii) sets $\bigcup
+ S_n$ are open and dense, thus $A$ must be comeagre. Now we prove the
+ claim towards contradiction.
+
+ Suppose there is $x\in \mathcal{S}\setminus A$. By the lemma
+ \ref{lemma:comprehensive_lemma}, (iii) for any $n$ there is unique
+ $x\in V_n\in S_n$. It follows that $p_{V_0}\subset
+ p_{V_1}\subset\ldots$. Now the game $(U_0, V_0, U_1, V_1,\ldots)
+ = \bigcup_n p_{V_n}\in [S]\subseteq [\sigma]$ is not winning for
+ player $\textit{II}$, which contradicts the assumption that $\sigma$ is
+ a winning strategy. \end{proof}
+
+ \begin{corollary}
+ \label{corollary:banach-mazur-basis}
+ If we add a constraint to the Banach-Mazur game such that players can only
+ choose basic open sets, then the theorem \ref{theorem:banach_mazur_thm}
+ still suffices.
+ \end{corollary}
+
+ \begin{proof}
+ If one adds the word \textit{basic} before each occurrence
+ of word \textit{open} in previous proofs and theorems then they all
+ will still be valid (except for $\Rightarrow$, but its an easy fix --
+ take $V_n$ a basic open subset of $U_n\cap A_n$).
+ \end{proof}
+
+ This corollary will be important in using the theorem in practice --
+ it's much easier to work with basic open sets rather than any open
+ sets.
+
+ \section{Fraïssé classes}
+
+ In this section we will take a closer look at classes of finitely
+ generated structures with some characteristic properties. More
+ specifically, we will describe a concept developed by a French
+ mathematician Roland Fraïssé called Fraïssé limit.
+
+ \subsection{Definitions}
+ \begin{definition}
+ Let $L$ be a signature and $M$ be an $L$-structure. The \emph{age} of $M$ is
+ the class $\bK$ of all finitely generated structures that embedds into $M$.
+ The age of $M$ is also associated with class of all structures embeddable in
+ $M$ \emph{up to isomorphism}.
+ \end{definition}
+
+ \begin{definition}
+ We say that $M$ has \emph{countable age} when its age has countably many
+ isomorphism types of finitely generated structures.
+ \end{definition}
+
+ \begin{definition}
+ Let $\bK$ be a class of finitely generated structures. $\bK$ has
+ \emph{hereditary property (HP)} if for any $A\in\bK$, any finitely generated
+ substructure $B$ of $A$ it holds that $B\in\bK$.
+ \end{definition}
+
+ \begin{definition}
+ Let $\bK$ be a class of finitely generated structures. We say that $\bK$ has
+ \emph{joint embedding property (JEP)} if for any $A, B\in\bK$ there is a
+ structure $C\in\bK$ such that both $A$ and $B$ embed in $C$.
+ \end{definition}
+
+ Fraïssé has shown fundamental theories regarding age of a structure, one of
+ them being the following one:
+
+ \begin{fact}
+ \label{fact:age_is_hpjep}
+ Suppose $L$ is a signature and $\bK$ is a nonempty finite or countable set
+ of finitely generated $L$-structures. Then $\bK$ has the HP and JEP if
+ and only if $\bK$ is the age of some finite or countable structure.
+ \end{fact}
+
+ Beside the HP and JEP Fraïssé has distinguished one more property of the
+ class $\bK$, namely amalgamation property.
+
+ \begin{definition}
+ Let $\bK$ be a class of finitely generated $L$-structures. We say that $\bK$
+ has the \emph{amalgamation property (AP)} if for any $A, B, C\in\bK$ and
+ embeddings $f\colon A\to B, g\colon A\to C$ there exists $D\in\bK$ together
+ with embeddings $h\colon B\to D$ and $j\colon C\to D$ such that
+ $h\circ f = j\circ g$.
+ \begin{center}
+ \begin{tikzcd}
+ & D & \\
+ B \arrow[ur, dashed, "h"] & & C \arrow[ul, dashed, "j"'] \\
+ & A \arrow[ur, "g"'] \arrow[ul, "f"]
+ \end{tikzcd}
+ \end{center}
+ \end{definition}
+
+ \begin{definition}
+ Let $M$ be an $L$-structure. $M$ is \emph{ultrahomogenous} if every
+ isomorphism between finitely generated substrucutres of $M$ extends to an
+ automorphism of $M$.
+ \end{definition}
+
+ Having those definitions we can provide the main Fraïssé theorem.
+
+ \begin{theorem}[Fraïssé theorem]
+ \label{theorem:fraisse_thm}
+ Let L be a countable language and let $\bK$ be a nonempty countable set of
+ finitely generated $L$-structures which has HP, JEP and AP. Then $\bK$ is
+ the age of a countable, ultrahomogenous $L$-structure $M$. Moreover, $M$ is
+ unique up to isomorphism. We say that $M$ is a \emph{Fraïssé limit} of $\bK$
+ and denote this by $M = \Flim(\bK)$.
+ \end{theorem}
+
+ This is a well known theorem. One can read a proof of this theorem in Wilfrid
+ Hodges' classical book \textit{Model Theory}~\cite{hodges_1993}. In the proof
+ of this theorem appears another, equally important \ref{lemma:weak_ultrahom}.
+
+ \begin{definition}
+ We say that an $L$-structure $M$ is \emph{weakly ultrahomogenous} if for any
+ $A, B$ finitely generated substructures of $M$ such that $A\subseteq B$ and
+ an embedding $f\colon A\to M$ there is an embedding $g\colon B\to M$ which
+ extends $f$.
+ \begin{center}
+ \begin{tikzcd}
+ A \arrow[d, "\subseteq"'] \arrow[r, "f"] & D \\
+ B \arrow[ur, dashed, "g"']
+ \end{tikzcd}
+ \end{center}
+ \end{definition}
+
+ \begin{lemma}
+ \label{lemma:weak_ultrahom}
+ A countable structure is ultrahomogenous if and only if it is weakly
+ ultrahomogenous.
+ \end{lemma}
+
+ This lemma will play a major role in the later parts of the paper. Weak
+ ultrahomogenity is an easier and more intuitive property and it will prove
+ useful when recursively constructing the generic automorphism of a Fraïssé
+ limit.
+
+
+ % \begin{definition} For $\cC$, $M$ as in Fact~\ref{fact:fraisse_thm}, we
+ % write $\Flim(\cC)\coloneqq M$. \end{definition}
+
+ % \begin{fact} If $\cC$ is a uniformly locally finite Fraïssé class, then
+ % $\Flim(\cC)$ is $\aleph_0$-categorical and has quantifier elimination.
+ % \end{fact}
+
+ % \section{Conjugacy classes in automorphism groups}
+
+ % \subsection{Prototype: pure set} In this section, $M=(M,=)$ is an
+ % infinite countable set (with no structure beyond equality).
+ % \begin{proposition} If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are
+ % conjugate if and only if for each $n\in \bN\cup \{\aleph_0\}$, $f_1$
+ % and $f_2$ have the same number of orbits of size $n$.
+ % \end{proposition}
+
+ % \begin{proposition} The conjugacy class of $f\in \Aut(M)$ is dense if
+ % and only if... \end{proposition} \begin{proposition} If $f\in
+ % \Aut(M)$ has an infinite orbit, then the conjugacy class of $f$ is
+ % meagre.
+ % \end{proposition}
+
+ % \begin{proposition} An automorphism $f$ of $M$ is generic if and only if...
+ % \end{proposition}
+
+ % \begin{proof}
+
+ % \end{proof}
+
+ % \subsection{More general structures}
+
+
+ % \begin{proposition} Suppose $M$ is an arbitrary structure and $f_1,f_2\in
+ % \Aut(M)$. Then $f_1$ and $f_2$ are conjugate if and only if $(M,f_1)\cong
+ % (M,f_2)$. \end{proposition}
+
+ % \begin{definition} We say that a Fraïssé class $\cC$ has \emph{weak
+ % Hrushovski property} (\emph{WHP}) if for every $A\in \cC$ and partial
+ % automorphism $p\colon A\to A$, there is some $B\in \cC$ such that $p$ can
+ % be extended to an automorphism of $B$, i.e.\ there is an embedding
+ % $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following
+ % diagram commutes:
+ % \begin{center}
+ % \begin{tikzcd}
+ % B\ar[r,"\bar p"]&B\\
+ % A\ar[u,"i"]\ar[r,"p"]&A\ar[u,"i"]
+ % \end{tikzcd}
+ % \end{center}
+ % \end{definition}
+
+ % \begin{proposition} Suppose $\cC$ is a Fraïssé class in a relational
+ % language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$, all
+ % orbits of $f$ are finite. \end{proposition} \begin{proposition} Suppose
+ % $\cC$ is a Fraïssé class in an arbitrary countable language with WHP.
+ % Then generically, for an $f\in \Aut(\Flim(\cC))$ ... \end{proposition}
+
+ % \subsection{Random graph} \begin{definition} The \emph{random graph}
+ % is... \end{definition}
+
+ % \begin{fact} The \end{fact}
+
+ % \begin{proposition} Generically, the set of fixed points of $f\in
+ % \Aut(M)$ is isomorphic to $M$ (as a graph). \end{proposition}
+ \printbibliography
+\end{document}
|