aboutsummaryrefslogtreecommitdiff
path: root/lic_malinka.tex
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2022-05-08 19:42:41 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2022-05-08 19:42:41 +0200
commite0fea5a2063f6babc496f593dbb05f8814bddc67 (patch)
treece9c16edd2a55d7385551a5e55afb30f2be95e61 /lic_malinka.tex
parent29fb1dc0cb80c83f071079009ba487720685f05a (diff)
More general proposition 3.18
Diffstat (limited to 'lic_malinka.tex')
-rw-r--r--lic_malinka.tex85
1 files changed, 83 insertions, 2 deletions
diff --git a/lic_malinka.tex b/lic_malinka.tex
index 5e52034..9b218ee 100644
--- a/lic_malinka.tex
+++ b/lic_malinka.tex
@@ -47,6 +47,7 @@
\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}}
\newcommand{\cC}{\mathcal C}
+\newcommand{\cD}{\mathcal D}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cU}{\mathcal{U}}
\newcommand{\cG}{\mathcal{G}}
@@ -144,7 +145,8 @@
}x\}$ is comeagre in $X$.
\end{definition}
- \begin{definition} Let $X$ be a nonempty topological space and let
+ \begin{definition}
+ Let $X$ be a nonempty topological space and let
$A\subseteq X$. The \emph{Banach-Mazur game of $A$}, denoted as
$G^{\star\star}(A)$ is defined as follows: Players $I$ and
$\textit{II}$ take turns in playing nonempty open sets $U_0, V_0,
@@ -646,6 +648,56 @@
$\theta[R\upharpoonright_X] = X, \theta[R\upharpoonright_Y] = Y$.
\end{proof}
+ \begin{theorem}
+ Let $\cC$ be a Fraïssé class of finite structures in a relational language
+ $L$ of some theory $T$. Let $\cD$ be a class of finite structures of the
+ theory $T$ in a relational language $L$ with additional unary function
+ symbol interpreted as an automorphism of the structure. If $\cC$ has the
+ weak Hrushovski property and $\cD$ is a Fraïssé class then the Fraïssé
+ limit of $\cC$ is isomorphic to the Fraïssé limit of $\cD$ reduced
+ to the language $L$.
+ \end{theorem}
+
+ \begin{proof}
+ Let $\Gamma=\Flim(\cC)$ and $(\Pi, \sigma) =\Flim(\cD)$. By the Fraïssé
+ theorem \ref{theorem:fraisse_thm} it suffices to show that the age of $\Pi$
+ is $\cC$ and that it has the weak ultrahomogeneity in the class $\cC$. The
+ former comes easily, as for every structure $A\in \cC$ we have the structure
+ $(A, \id_A)\in \cD$, which means that the structure $A$ embedds into $\Pi$.
+ Also, if a structure $(B, \beta)\in\cD$ embedds into $\cD$, then $B\in\cC$.
+ Hence, $\cC$ is indeed the age of $\Pi$.
+
+ Now, take any structure $A, B\in\cC$ such that $A\subseteq B$. Without the
+ loss of generality assume that $A = B\cap \Pi$. Let $\bar{A}$ be the
+ smallest structure closed on the automorphism $\sigma$ and containg $A$.
+ It is finite, as $\cC$ is the age of $\Pi$. By the weak Hrushovski property,
+ of $\cC$ let $(\bar{B}, \beta)$ be a structure extending
+ $(B\cup \bar{A}, \sigma\upharpoonright_{\bar{A}})$. Again, we may assume
+ that $B\cup \bar{A}\subseteq \bar{B}$. Then, by the fact that $\Pi$ is a
+ Fraïssé limit of $\cD$ there is an embedding
+ $f\colon(\bar{B}, \beta)\to(\Pi, \sigma)$
+ such that the following diagram commutes:
+
+ \begin{center}
+ \begin{tikzcd}
+ (A, \emptyset) \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & (\bar{A}, \sigma\upharpoonright_A) \arrow[d, "\subseteq"] \arrow[r, "\subseteq"] & (\Pi, \sigma) \\
+ (B, \sigma\upharpoonright_B) \arrow[r, dashed, "\subseteq"'] & (\bar{B}, \beta) \arrow[ur, dashed, "f"]
+ \end{tikzcd}
+ \end{center}
+
+ Then we simply get the following diagram:
+
+ \begin{center}
+ \begin{tikzcd}
+ A \arrow[d, "\subseteq"'] \arrow[r, "\subseteq"] & \Pi \\
+ B \arrow[ur, dashed, "f\upharpoonright_B"']
+ \end{tikzcd}
+ \end{center}
+
+ which proves that $\Pi$ is indeed a weakly ultrahomogeneous structure in $\cC$.
+ Hence, it is isomorphic to $\Gamma$.
+ \end{proof}
+
\section{Conjugacy classes in automorphism groups}
TODO:
@@ -659,6 +711,7 @@
$[f]_{G} = \{g\in G\mid f\subseteq g\}$.
\subsection{Prototype: pure set}
+
In this section, $M=(M,=)$ is an infinite countable set (with no structure
beyond equality).
@@ -881,7 +934,8 @@
Take any finite graph with automorphism $(B, \beta)$. Then, there are
$i, j$ such that $(B, \beta) = (B_{i, j}, \beta_{i,j})$ and $A_{i,j}=\emptyset$.
- By the bookkeeping there was $n$ such that $(i, j) = \min\{\{0,1,\ldots\}\times\bN\setminus X_{n-1}\}$.
+ By the bookkeeping there was $n$ such that
+ $(i, j) = \min\{\{0,1,\ldots\}\times\bN\setminus X_{n-1}\}$.
This means that $(B, \beta)$ embeds into $(\FrGr_n, g_n)$, hence it embeds
into $(\FrGr, g)$, thus it has age $\cH$.
With a similar argument we can see that $(\FrGr, g)$ is weakly ultrahomogeneous.
@@ -893,5 +947,32 @@
set $A$.
\end{proof}
+ \begin{corollary}
+ Let $\mathcal{W}$ be a Fraïssé class of finitely generated $L$-structures of
+ a theory $T$. Let $\mathcal{V}$ be the class of finitely generated structures
+ of $T$ with an additional unary function interpreted as an automoprphism of
+ the structure. If $\mathcal{W}$ has weak Hrushovski property and $\mathcal{V}$
+ is a Fraïssé class, then $\mathcal{W}$ has a generic automorphism.
+ \end{corollary}
+
+ TODO: pokazać że w ogólności granica Fraissego V bez tego automorfizmu jest
+ izomorficzna z W, dopiero wtedy można ten dowód tak uogólnić.
+
+ \begin{proof}
+ The proof is an abstract version of the theorem for the random graph.
+ \end{proof}
+
+ \subsection{Properties of the generic automorphism}
+
+ \begin{proposition}
+ Let $\sigma$ be the generic automorphism of the random graph $\FrGr$. Then
+ the graph induced by the set of the fixed points of $\sigma$ is isomorphic
+ to $\FrGr$.
+ \end{proposition}
+
+ \begin{proof}
+ Let $F = \{v\in\FrGr\mid \sigma(v) = v\}$. It suffices to show that $F$ is
+ infinite and has the random graph property.
+ \end{proof}
\printbibliography
\end{document}