diff options
author | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-04-20 20:55:53 +0200 |
---|---|---|
committer | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-04-20 20:55:53 +0200 |
commit | d457bc06427c6e70c0d6cb19b1b6203bdd57ffc9 (patch) | |
tree | c2543e7f26f667e4fdc4f8834b9cb022dfb5fa8d /lic_malinka.tex | |
parent | 14916d95484bdac8fa95d66ca8a7fb37d69efee6 (diff) |
Main proof
Diffstat (limited to 'lic_malinka.tex')
-rw-r--r-- | lic_malinka.tex | 116 |
1 files changed, 100 insertions, 16 deletions
diff --git a/lic_malinka.tex b/lic_malinka.tex index f7a3570..47dea88 100644 --- a/lic_malinka.tex +++ b/lic_malinka.tex @@ -1,10 +1,10 @@ \documentclass[11pt, a4paper, final]{amsart}
\setlength{\emergencystretch}{2em}
+\usepackage[utf8]{inputenc}
\usepackage[backend=biber]{biblatex}
\addbibresource{licmalinka.bib}
-
\usepackage[T1]{fontenc}
\usepackage{mathtools}
\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,stretch=10,shrink=10]{microtype}
@@ -19,7 +19,6 @@ \usepackage[charter, expert, greekuppercase=italicized, greekfamily=didot]{mathdesign}
\usepackage{mathtools}
\usepackage{enumitem}
-\usepackage[utf8]{inputenc}
\usepackage{tikz-cd}
\usepackage{tikz}
\usetikzlibrary{arrows,arrows.meta}
@@ -541,6 +540,20 @@ Using this fact one can show that the graph constructed in the probabilistic
manner is in fact isomorphic to the random graph $\FrGr$.
+ \begin{definition} We say that a Fraïssé class $\bK$ has \emph{weak
+ Hrushovski property} (\emph{WHP}) if for every $A\in \bK$ and an isomorphism
+ of substructures of $A$ $p\colon A\to A$, there is some $B\in \bK$ such
+ that $p$ can be extended to an automorphism of $B$, i.e.\ there is an
+ embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following
+ diagram commutes:
+ \begin{center}
+ \begin{tikzcd}
+ B\ar[r,dashed,"\bar p"]&B\\
+ A\ar[u,dashed,"i"]\ar[r,"p"]&A\ar[u,dashed,"i"]
+ \end{tikzcd}
+ \end{center}
+ \end{definition}
+
\begin{proposition}
\label{proposition:finite-graphs-whp}
The class of finite graphs $\cG$ has the weak Hrushovski property.
@@ -568,7 +581,7 @@ Take any graphs $(A, \alpha), (B, \beta), (C,\gamma)$ such that $A$ embedds
into $B$ and $C$. Let $D$ be the amalgamation of $B$ and $C$ over $A$ as in
- the proof for the plain graphs. We will define the automorphis
+ the proof for the plain graphs. We will define the automorphism
$\delta\in\Aut(D)$ so it extends $\beta$ and $\gamma$. (TODO: chyba nie
tylko extends ale coś więcej: wiem o co chodzi, ale nie wiem jak to
napisać) We let $\delta_{\upharpoonright X} = \id_X$ for $X\in \{A,
@@ -591,6 +604,7 @@ surprisingly, $\FrAut$ is in fact a random graph.
\begin{proposition}
+ \label{proposition:graph-aut-is-normal}
The Fraïssé limit of $\cH$ interpreted as a plain graph is isomorphic to
the random graph $\FrGr$.
\end{proposition}
@@ -647,6 +661,7 @@ \subsection{More general structures}
\begin{fact}
+ \label{fact:conjugacy}
Suppose $M$ is an arbitrary structure and $f_1,f_2\in \Aut(M)$.
Then $f_1$ and $f_2$ are conjugate if and only if $(M,f_1)\cong
(M,f_2)$ as structures with one additional unary relation that is
@@ -660,19 +675,6 @@ $g\circ f_1 = f_2 \circ g$ which exactly means that $f_1, f_2$ conjugate.
\end{proof}
- \begin{definition} We say that a Fraïssé class $\bK$ has \emph{weak
- Hrushovski property} (\emph{WHP}) if for every $A\in \bK$ and an isomorphism
- of substructures of $A$ $p\colon A\to A$, there is some $B\in \bK$ such
- that $p$ can be extended to an automorphism of $B$, i.e.\ there is an
- embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following
- diagram commutes:
- \begin{center}
- \begin{tikzcd}
- B\ar[r,dashed,"\bar p"]&B\\
- A\ar[u,dashed,"i"]\ar[r,"p"]&A\ar[u,dashed,"i"]
- \end{tikzcd}
- \end{center}
- \end{definition}
% \begin{proposition} Suppose $\cC$ is a Fraïssé class in a relational
% language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$, all
@@ -683,5 +685,87 @@ % \begin{proposition} Generically, the set of fixed points of $f\in
% \Aut(M)$ is isomorphic to $M$ (as a graph). \end{proposition}
+ \begin{theorem}
+ \label{theorem:generic_aut_graph}
+ Let $\FrGr$ be the Fraïssé limit of the class of all finite graphs $\bK$.
+ Then $\FrGr$ has a generic automorphism $\tau\in\Aut(\FrGr)$, i.e. the
+ conjugacy class of $\tau$ is comeagre in $G = \Aut(\FrGr)$.
+ \end{theorem}
+
+ \begin{proof}
+ We will construct a strategy for the second player in the Banach-Mazur game
+ on the topological space $G$. This strategy will give us a subset
+ $A\subseteq G$ and as we will see, this will also be a subset of the
+ conjugacy class of $\tau$. By the Banach-Mazur theorem
+ \ref{theorem:banach_mazur_thm} this will prove that the class is comeagre.
+
+ Recall, $G$ has a basis consisting of open
+ sets $\{g\in G\mid g\upharpoonright_A = g_0\upharpoonright_A\}$ for some
+ finite set $A\subseteq \FrGr$ and some automorphism $g_0\in G$. In other
+ words, a basic open set is a set of all extensions of some finite partial
+ isomorphism $g_0$ of $\FrGr$. By $B_{g}\subseteq G$ we denote a basic
+ open subset given by a finite partial isomorphism $g$. From now on we will
+ consider only finite partial isomorphism $g$ such that $B_g$ is nonempty.
+
+ With the use of corollary \ref{corollary:banach-mazur-basis} we can consider
+ only games, where both players choose finite partial isomorphisms. Namely,
+ player \textit{I} picks functions $f_0, f_1,\ldots$ and player \textit{II}
+ chooses $g_0, g_1,\ldots$ such that
+ $f_0\subseteq g_0\subseteq f_1\subseteq g_1\subseteq\ldots$, which identify
+ the coresponding basic open subsets $B_{f_0}\supseteq B_{g_0}\supseteq\ldots$.
+
+ Our goal is to choose $g_i$ in such a manner that the resulting function
+ $g = \bigcap^{\infty}_{i=0}g_i$ will be an automorphism of the random graph
+ such that $(\FrGr, g) = \Flim{\cH}$, i.e. the Fraïssé limit of finite
+ graphs with automorphism. By the Fraïssé theorem \ref{theorem:fraisse_thm}
+ it will follow that $(\FrGr, g)\cong (\FrAut, \sigma)$. By the
+ proposition \ref{proposition:graph-aut-is-normal} we can assume without
+ the loss of generatlity that $\FrAut = \FrGr$ as a plain graph. Hence,
+ by the fact \ref{fact:conjugacy}, $g$ and $\sigma$ conjugate in $G$.
+
+ Once again, by the Fraïssé theorem \ref{theorem:fraisse_thm} and the
+ \ref{lemma:weak_ultrahom} lemma constructing $g_i$'s in a way such that
+ age of $(\FrGr, g)$ is exactly $\cH$ and so that it is weakly ultrahomogenous
+ will produce expected result. First, let us enumerate all pairs of finite
+ graphs with automorphism $\{\langle(A_n, \alpha_n), (B_n, \beta_n)\rangle\}_{n\in\bN}$
+ such that the first element of the pair embedds by inclusion in the second,
+ i.e. $(A_n, \alpha_n)\subseteq (B_n, \beta_n)$. Also, it may be that
+ $A_n$ is an empty graph. We enumerate the verticies of the random graph
+ $\FrGr = \{v_0, v_1, \ldots\}$.
+
+ Just for sake of fixing a technical problem, let $g_{-1} = \emptyset$.
+ Suppose that player \textit{I} in the $n$-th move chose a finite partial
+ isomoprhism $f_n$. We will construct $g_n\supseteq f_n$ such that
+ following properties hold:
+ \begin{enumerate}[label=(\roman*)]
+ \item $g_n$ is an automorphism of the induced subgraph $\FrGr_n$,
+ \item $g_n(v_n)$ and $g_n^{-1}(v_n)$ are defined,
+ \item let
+ $\{\langle (A_{n,k}, \alpha_{n, k}), (B_{n,k}, \beta_{n,k}), f_{n, k}\rangle\}_{k\in\bN}$
+ be the enumeration of all pairs of finite graphs with automorphism such
+ that the first is a substructure of the second, i.e.
+ $(A_{n,k}, \alpha_{n,k})\subseteq (B_{n,k}, \beta_{n,k})$, and $f_{n,k}$
+ is an embedding of $(A_{n,k}, \alpha_{n,k})$ in the $\FrGr_{n-1}$ (which
+ is the graph induced by $g_{n-1}$). Let
+ $(i, j) = \min\{\{0, 1, \ldots\} \times \bN \setminus X_{n-1}\}$. Then
+ $(B_{n,k}, \beta_{n,k})$ embedds in $(\FrGr_n, g_n)$ so that this diagram
+ commutes:
+
+ \begin{center}
+ \begin{tikzcd}
+ (A_{i,j}, \alpha_{i,j}) \arrow[d, "\subseteq"'] \arrow[r, "f_{i,j}"] & (\FrGr_n, g_n) \\
+ (B_{i,j}, \beta_{i,j}) \arrow[ur, dashed, "\hat{f}_{i,j}"']
+ \end{tikzcd}
+ \end{center}
+ \end{enumerate}
+
+ First item makes sure that no inifite orbit will not be present in $g$. The
+ second item together with the first one are necessary for $g$ to be an
+ automorphism of $\FrGr$. The third item is the one that gives weak
+ ultrahomogeneity.
+ \end{proof}
+
+
+
\printbibliography
\end{document}
|