diff options
author | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-03-26 15:18:26 +0100 |
---|---|---|
committer | Franciszek Malinka <franciszek.malinka@gmail.com> | 2022-03-26 15:18:26 +0100 |
commit | 78cbd57aad87cd07d4ebe218d09a8a926b12b2cb (patch) | |
tree | c2b78fce525a8e6351e39162459348554d0c27a5 /lic_malinka.tex | |
parent | e79d66fdd62e06bff773562daa7c29c1cba91bcc (diff) |
Troche o grafie losowym
Diffstat (limited to 'lic_malinka.tex')
-rw-r--r-- | lic_malinka.tex | 190 |
1 files changed, 143 insertions, 47 deletions
diff --git a/lic_malinka.tex b/lic_malinka.tex index 0dde9cd..d98ecee 100644 --- a/lic_malinka.tex +++ b/lic_malinka.tex @@ -1,10 +1,12 @@ -\documentclass[11pt, a4paper, final]{amsart} \setlength{\emergencystretch}{2em}
+\documentclass[11pt, a4paper, final]{amsart}
+\setlength{\emergencystretch}{2em}
\usepackage[backend=biber]{biblatex}
\addbibresource{licmalinka.bib}
-\usepackage[T1]{fontenc} \usepackage{mathtools}
+\usepackage[T1]{fontenc}
+\usepackage{mathtools}
\usepackage[activate={true,nocompatibility},final,tracking=true,kerning=true,spacing=true,stretch=10,shrink=10]{microtype}
\microtypecontext{spacing=nonfrench}
% \usepackage[utf8]{inputenc}
@@ -23,7 +25,6 @@ \usetikzlibrary{arrows,arrows.meta}
\tikzcdset{arrow style=tikz, diagrams={>=latex}}
-
\usepackage{etoolbox}
\usepackage{xcolor}
@@ -40,13 +41,16 @@ \DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\Stab}{Stab}
\DeclareMathOperator{\st}{st}
-\DeclareMathOperator{\Flim}{FLim}
+\DeclareMathOperator{\Flim}{Flim}
\DeclareMathOperator{\Int}{{Int}}
+\DeclareMathOperator{\rng}{{rng}}
+\DeclareMathOperator{\dom}{{dom}}
\newcommand{\cupdot}{\mathbin{\mathaccent\cdot\cup}}
\newcommand{\cC}{\mathcal C}
\newcommand{\cV}{\mathcal{V}}
\newcommand{\cU}{\mathcal{U}}
+\newcommand{\cG}{\mathcal{G}}
\newcommand{\bN}{\mathbb N}
\newcommand{\bR}{\mathbb R}
\newcommand{\bZ}{\mathbb Z}
@@ -447,56 +451,64 @@ useful when recursively constructing the generic automorphism of a Fraïssé
limit.
-
- % \begin{definition} For $\cC$, $M$ as in Fact~\ref{fact:fraisse_thm}, we
- % write $\Flim(\cC)\coloneqq M$. \end{definition}
-
- % \begin{fact} If $\cC$ is a uniformly locally finite Fraïssé class, then
- % $\Flim(\cC)$ is $\aleph_0$-categorical and has quantifier elimination.
+ % \begin{fact} If $\bK$ is a uniformly locally finite Fraïssé class, then
+ % $\Flim(\bK)$ is $\aleph_0$-categorical and has quantifier elimination.
% \end{fact}
- % \section{Conjugacy classes in automorphism groups}
-
- % \subsection{Prototype: pure set} In this section, $M=(M,=)$ is an
- % infinite countable set (with no structure beyond equality).
- % \begin{proposition} If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are
- % conjugate if and only if for each $n\in \bN\cup \{\aleph_0\}$, $f_1$
- % and $f_2$ have the same number of orbits of size $n$.
- % \end{proposition}
-
- % \begin{proposition} The conjugacy class of $f\in \Aut(M)$ is dense if
- % and only if... \end{proposition} \begin{proposition} If $f\in
- % \Aut(M)$ has an infinite orbit, then the conjugacy class of $f$ is
- % meagre.
- % \end{proposition}
-
- % \begin{proposition} An automorphism $f$ of $M$ is generic if and only if...
+ \section{Conjugacy classes in automorphism groups}
+
+ \subsection{Prototype: pure set}
+ In this section, $M=(M,=)$ is an infinite countable set (with no structure
+ beyond equality).
+ \begin{proposition}
+ If $f_1,f_2\in \Aut(M)$, then $f_1$ and $f_2$ are conjugate if and only
+ if for each $n\in \bN\cup \{\aleph_0\}$, $f_1$ and $f_2$ have the same
+ number of orbits of size $n$.
+ \end{proposition}
+
+ \begin{proposition} The conjugacy class of $f\in \Aut(M)$ is dense if
+ and only if... \end{proposition} \begin{proposition} If $f\in
+ \Aut(M)$ has an infinite orbit, then the conjugacy class of $f$ is
+ meagre.
+ \end{proposition}
+
+ % \begin{proposition}
+ % An automorphism $f$ of $M$ is generic if and only if...
% \end{proposition}
% \begin{proof}
% \end{proof}
- % \subsection{More general structures}
-
+ \subsection{More general structures}
- % \begin{proposition} Suppose $M$ is an arbitrary structure and $f_1,f_2\in
- % \Aut(M)$. Then $f_1$ and $f_2$ are conjugate if and only if $(M,f_1)\cong
- % (M,f_2)$. \end{proposition}
+ \begin{fact}
+ Suppose $M$ is an arbitrary structure and $f_1,f_2\in \Aut(M)$.
+ Then $f_1$ and $f_2$ are conjugate if and only if $(M,f_1)\cong
+ (M,f_2)$ as structures with one additional unary relation that is
+ an automorphism.
+ \end{fact}
- % \begin{definition} We say that a Fraïssé class $\cC$ has \emph{weak
- % Hrushovski property} (\emph{WHP}) if for every $A\in \cC$ and partial
- % automorphism $p\colon A\to A$, there is some $B\in \cC$ such that $p$ can
- % be extended to an automorphism of $B$, i.e.\ there is an embedding
- % $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following
- % diagram commutes:
- % \begin{center}
- % \begin{tikzcd}
- % B\ar[r,"\bar p"]&B\\
- % A\ar[u,"i"]\ar[r,"p"]&A\ar[u,"i"]
- % \end{tikzcd}
- % \end{center}
- % \end{definition}
+ \begin{proof}
+ Suppose that $f_1 = g^{-1}f_2g$ for some $g\in \Aut(M)$.
+ Then $g$ is the automorphism we're looking for. On the other hand if
+ $g\colon (M, f_1)\to (M, f_2)$ is an isomorphism, then
+ $g\circ f_1 = f_2 \circ g$ which exactly means that $f_1, f_2$ conjugate.
+ \end{proof}
+
+ \begin{definition} We say that a Fraïssé class $\bK$ has \emph{weak
+ Hrushovski property} (\emph{WHP}) if for every $A\in \bK$ and an isomorphism
+ of substructures of $A$ $p\colon A\to A$, there is some $B\in \bK$ such
+ that $p$ can be extended to an automorphism of $B$, i.e.\ there is an
+ embedding $i\colon A\to B$ and a $\bar p\in \Aut(B)$ such that the following
+ diagram commutes:
+ \begin{center}
+ \begin{tikzcd}
+ B\ar[r,dashed,"\bar p"]&B\\
+ A\ar[u,dashed,"i"]\ar[r,"p"]&A\ar[u,dashed,"i"]
+ \end{tikzcd}
+ \end{center}
+ \end{definition}
% \begin{proposition} Suppose $\cC$ is a Fraïssé class in a relational
% language with WHP. Then generically, for an $f\in \Aut(\Flim(\cC))$, all
@@ -504,10 +516,94 @@ % $\cC$ is a Fraïssé class in an arbitrary countable language with WHP.
% Then generically, for an $f\in \Aut(\Flim(\cC))$ ... \end{proposition}
- % \subsection{Random graph} \begin{definition} The \emph{random graph}
- % is... \end{definition}
+ \subsection{Random graph}
+
+ In this section we'll take a closer look on a class of finite graphs, which
+ form a Fraïssé class.
+
+ \begin{proposition}
+ Let $\cG$ be the class of all finite graphs. $\cG$ is a Fraïssé class.
+ \end{proposition}
+ \begin{proof}
+ $\cG$ is of course countable (up to isomorphism) and has the HP
+ (graph substructure is also a graph). It has JEP: having two finite graphs
+ $G_1,G_2$ take their disjoint union $G_1\sqcup G_2$ as the extension of them
+ both. $\cG$ has the AP. Having graphs $A, B, C$, where $B$ and $C$ are
+ supergraphs of $A$, we can assume without loss of generality, that
+ $(B\setminus A) \cap (C\setminus A) = \emptyset$. Then
+ $A\sqcup (B\setminus A)\sqcup (C\setminus A)$ is the graph we're looking
+ for (with edges as in B and C and without any edges between the disjoint
+ parts).
+ \end{proof}
+
+ \begin{definition}
+ The \emph{random graph} is the Fraïssé limit of the class of finite graphs
+ $\cG$ denoted by $\Gamma = \Flim(\cG)$.
+ \end{definition}
+
+ The concept of the random graph emerges independently in many fields of
+ mathematics. For example, one can construct the graph by choosing at random
+ for each pair of verticies if they should be connected or not. It turns out
+ that the graph constructed this way is exactly the random graph we described
+ above.
+
+ The random graph $\Gamma$ has one particular property that is unique to the
+ random graph.
+
+ \begin{fact}[random graph property]
+ For each finite disjoint $X, Y\subseteq \Gamma$ there exists $v\in\Gamma$
+ such that $\forall u\in X (vEu)$ and $\forall u\in Y (\neg vEu)$.
+ \end{fact}
+ \begin{proof}
+ Take any finite disjoint $X, Y\subseteq\Gamma$. Let $G_{XY}$ be the
+ subgraph of $\Gamma$ induced by the $X\cup Y$. Let $H = G_{XY}\cup \{w\}$,
+ where $w$ is a new vertex that does not appear in $G_{XY}$. Also, $w$ is connected to
+ all verticies of $G_{XY}$ that come from $X$ and to none of those that come
+ from $Y$. This graph is of course finite, so it is embeddable in $\Gamma$.
+ Wihtout loss of generality assume that this embedding is simply inclusion.
+ Let $f$ be the partial isomorphism from $X\sqcup Y$ to $H$, with $X$ and
+ $Y$ projected to the part of $H$ that come from $X$ and $Y$ respectively.
+ By the ultrahomogenity of $\Gamma$ this isomoprhism extends to an automorphism
+ $\sigma\in\Aut(\Gamma)$. Then $v = \sigma^{-1}(w)$ is the vertex we sought.
+ \end{proof}
+
+ \begin{fact}
+ If a countable graph $G$ has the random graph property, then it is
+ isomorhpic to the random graph $\Gamma$.
+ \end{fact}
+ \begin{proof}
+ Enumerate verticies of both graphs: $\Gamma = \{a_1, a_2\ldots\}$ and $G
+ = \{b_1, b_2\ldots\}$.
+ We will construct a chain of partial isomorphisms $f_n\colon \Gamma\to G$
+ such that $\emptyset = f_0\subseteq f_1\subseteq f_2\subseteq\ldots$ and $a_n \in
+ \dom(f_n)$ and $b_n\in\rng(f_n)$.
+
+ Suppose we have $f_n$. We seek $b\in G$ such that $f_n\cup \{\langle
+ a_{n+1}, b\rangle\}$ is a partial isomoprhism. Let $X = \{a\in\Gamma\mid
+ aE_{\Gamma} a_{n+1}\}\cap \dom{f_n}, Y = X^{c}\cap \dom{f_n}$, i.e. $X$ are
+ verticies of $\dom{f_n}$ that are connected with $a_{n+1}$ in $\Gamma$ and
+ $Y$ are those verticies that are not connected with $a_{n+1}$. Let $b$ be
+ a vertex of $G$ that is connected to all verticies of $f_n[X]$ and to none
+ $f_n[Y]$ (it exists by the random graph property). Then $f_n\cup \{\langle
+ a_{n+1}, b\rangle\}$ is a partial isomoprhism. We find $a$ for the
+ $b_{n+1}$ in the similar manner, so that $f_{n+1} = f_n\cup \{\langle
+ a_{n+1}, b\rangle, \langle a, b_{n+1}\rangle\}$ is a partial isomorphism.
+
+ $f = \bigcup^{\infty}_{n=0}f_n$ is an isomoprhism between $\Gamma$
+ and $G$. Take any $a, b\in \Gamma$. Then for some big enough $n$ we have
+ that $aE_{\Gamma}b\Leftrightarrow f_n(a)E_{G}f_n(b) \Leftrightarrow f(a)E_{G}f(b)$ .
+ \end{proof}
- % \begin{fact} The \end{fact}
+ Using this fact one can show that the graph constructed in the probabilistic
+ manner is in fact isomorphic to the random graph $\Gamma$.
+
+ \begin{proposition}
+ The class of finite graphs $\cG$ has the weak Hrushovski property.
+ \end{proposition}
+
+ \begin{proof}
+ It may be there some day, but it may not!
+ \end{proof}
% \begin{proposition} Generically, the set of fixed points of $f\in
% \Aut(M)$ is isomorphic to $M$ (as a graph). \end{proposition}
|