aboutsummaryrefslogtreecommitdiff
path: root/lic_malinka.tex
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2022-04-21 01:28:40 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2022-04-21 01:28:40 +0200
commit5638b976f2fd1c50670d2ef7e6e6832fdc2a2dd8 (patch)
tree8e7ac486291339549eac79f1666d3bb7b9de6a22 /lic_malinka.tex
parent5e47a4972076f718dcb1f0766fa7bb8016f8056d (diff)
Removed a todo
Diffstat (limited to 'lic_malinka.tex')
-rw-r--r--lic_malinka.tex5
1 files changed, 2 insertions, 3 deletions
diff --git a/lic_malinka.tex b/lic_malinka.tex
index e1a45b3..af116cd 100644
--- a/lic_malinka.tex
+++ b/lic_malinka.tex
@@ -582,9 +582,8 @@
Take any graphs $(A, \alpha), (B, \beta), (C,\gamma)$ such that $A$ embeds
into $B$ and $C$. Let $D$ be the amalgamation of $B$ and $C$ over $A$ as in
the proof for the plain graphs. We will define the automorphism
- $\delta\in\Aut(D)$ so it extends $\beta$ and $\gamma$. (TODO: chyba nie
- tylko extends ale coś więcej: wiem o co chodzi, ale nie wiem jak to
- napisać) We let $\delta_{\upharpoonright X} = \id_X$ for $X\in \{A,
+ $\delta\in\Aut(D)$ so it extends $\beta$ and $\gamma$.
+ We let $\delta_{\upharpoonright X} = \id_X$ for $X\in \{A,
B\setminus A, C\setminus B\}$. Let's check the definition is correct. In
order to do that, we have to show that for any $u, v\in
D\quad(uE_Dv\leftrightarrow \delta(u)E_D\delta(v))$. We have two cases: