aboutsummaryrefslogtreecommitdiff
path: root/lic_malinka.tex
diff options
context:
space:
mode:
authorFranciszek Malinka <franciszek.malinka@gmail.com>2022-06-29 15:23:29 +0200
committerFranciszek Malinka <franciszek.malinka@gmail.com>2022-06-29 15:23:29 +0200
commit488d16570b6cd0d1bdd265e22c87e19da6e179a0 (patch)
treedf63a4f6bd022814645b2f73961654f541e264da /lic_malinka.tex
parentcc29818ac950b734bba958c35ba1057cc6a73476 (diff)
Kanoniczna amalgamacja już prawie gotowa!
Diffstat (limited to 'lic_malinka.tex')
-rw-r--r--lic_malinka.tex54
1 files changed, 54 insertions, 0 deletions
diff --git a/lic_malinka.tex b/lic_malinka.tex
index 6672e83..4ce39e0 100644
--- a/lic_malinka.tex
+++ b/lic_malinka.tex
@@ -376,6 +376,10 @@
\emph{identity morphism} $\id_A$ such that for any morphism $f\in \Mor(A, B)$
it follows that $f\circ id_A = \id_B \circ f$.
+ We say that $f\colon A\to B$ is \emph{isomorphism} if there is (necessarily
+ unique) morphism $g\colon B\to A$ such that $g\circ f = id_A$ and $f\circ g = id_B$.
+ Automorphism is an isomorphism where $A = B$.
+
A \emph{functor} is a ``homeomorphism`` of categories. We say that
$F\colon\cC\to\cD$ is a functor
from category $\cC$ to category $\cD$ if it associates each object $A\in\cC$
@@ -388,6 +392,12 @@
functors. Here, we only consider \emph{covariant functors}, so we will simply
say \emph{functor}.
+ \begin{fact}
+ \label{fact:functor_iso}
+ Functor $F\colon\cC\to\cD$ maps isomorphism $f\colon A\to B$ in $\cC$
+ to the isomorphism $F(f)\colon F(A)\to F(B)$ in $\cD$.
+ \end{fact}
+
Notion that will be very important for us is a ``morphism of functors``
which is called \emph{natural transformation}.
\begin{definition}
@@ -726,6 +736,13 @@
& C \arrow[ur] \arrow[ul] \arrow[uu, dashed, "\gamma"] & \\
\end{tikzcd}
\end{center}
+ % \begin{center}
+ % \begin{tikzcd}
+ % & A \ar[rrr, dashed, "\alpha"] \ar[drr, bend left=20, crossing over] & & & A' \ar[dr] & \\
+ % C \ar[rr, dashed, "\gamma"] \ar[ur] \ar[dr] & & C \ar[rrd, bend right=20] \ar[rru, bend left=20] & A\otimes_C B \ar[rr, dashed, "\delta"] & & A' \otimes_C B' \\
+ % & B \ar[rrr, dashed, "\beta"] \ar[urr, bend right=20, crossing over] & & & B' \ar[ur] & \\
+ % \end{tikzcd}
+ % \end{center}
\end{itemize}
\end{definition}
@@ -735,6 +752,43 @@
Then the class $\cH$ of $L$-structures with automorphism is a Fraïssé class.
\end{theorem}
+ \begin{proof}
+ $\cH$ is obviously countable and has HP. It suffices to show that it
+ has AP (JEP follows by taking $C$ to be the empty structure). Take any
+ $(A,\alpha), (B,\beta), (C,\gamma)\in \cH$ such that $(C,\gamma)$ embeds
+ into $(A,\alpha)$ and $(B,\beta)$. Then $\alpha, \beta, \gamma$ yield
+ an automorphism $\eta$ (as a natural transformation) of a cospan:
+ \begin{center}
+ \begin{tikzcd}
+ A & & B \\
+ % & C \ar[ur] \ar[ul] & \\
+ A \ar[u, dashed, "\alpha"] & C \ar[ur] \ar[ul] & B \ar[u, dashed, "\beta"'] \\
+ & C \ar[ur] \ar[ul] \ar[u, dashed, "\gamma"] &
+ % (A, \alpha) & & (B, \beta) \\
+ % & (C, \gamma) \ar[ur] \ar[ul] &
+ \end{tikzcd}
+ \end{center}
+
+ Then, by the fact \ref{fact:functor_iso}, $\otimes_C(\eta)$ is an automorphism
+ of the pushout diagram:
+
+ \begin{center}
+ \begin{tikzcd}
+ & A\otimes_C B \ar[loop above, "\delta"] & \\
+ A \ar[ur] \ar[loop left, "\alpha"]& & B \ar[ul] \ar[loop right, "\beta"]\\
+ & C \ar[ur] \ar[ul] \ar[loop below, "\gamma"] &
+ \end{tikzcd}
+ \end{center}
+
+ TODO: ten diagram nie jest do końca taki jak trzeba, trzeba w zasadzie skopiować
+ ten z definicji kanonicznej amalgamcji. Czy to nie będzie wyglądać źle?
+
+ This means that the morphism $\delta\colon A\otimes_C B\to A\otimes_C B$
+ has to be automorphism. Thus, by the fact that the diagram commutes,
+ we have the amalgamation of $(A, \alpha)$ and $(B, \beta)$ over $(C,\gamma)$
+ in $\cH$.
+ \end{proof}
+
\subsection{Graphs with automorphism}
The language and theory of unordered graphs is fairly simple. We extend the
language by one unary symbol $\sigma$ and interpret it as an arbitrary